(K折、留一,留p,随机)
学习预测函数的参数,并在相同数据集上进行测试是一种错误的做法: 一个仅给出测试用例标签的模型将会获得极高的分数,但对于尚未出现过的数据它则无法预测出任何有用的信息。 这种情况称为 overfitting(过拟合). 为了避免这种情况,在进行(监督)机器学习实验时,通常取出部分可利用数据作为 test set(测试数据集) X_test, y_test。
利用 scikit-learn 包中的 train_test_split 辅助函数可以很快地将实验数据集划分为任何训练集(training sets)和测试集(test sets)。